(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus#2(0, x12) → x12
plus#2(S(x4), x2) → S(plus#2(x4, x2))
fold#3(Nil) → 0
fold#3(Cons(x4, x2)) → plus#2(x4, fold#3(x2))
main(x1) → fold#3(x1)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus#2(0', x12) → x12
plus#2(S(x4), x2) → S(plus#2(x4, x2))
fold#3(Nil) → 0'
fold#3(Cons(x4, x2)) → plus#2(x4, fold#3(x2))
main(x1) → fold#3(x1)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
plus#2(0', x12) → x12
plus#2(S(x4), x2) → S(plus#2(x4, x2))
fold#3(Nil) → 0'
fold#3(Cons(x4, x2)) → plus#2(x4, fold#3(x2))
main(x1) → fold#3(x1)
Types:
plus#2 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
fold#3 :: Nil:Cons → 0':S
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
gen_0':S3_0 :: Nat → 0':S
gen_Nil:Cons4_0 :: Nat → Nil:Cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus#2,
fold#3They will be analysed ascendingly in the following order:
plus#2 < fold#3
(6) Obligation:
Innermost TRS:
Rules:
plus#2(
0',
x12) →
x12plus#2(
S(
x4),
x2) →
S(
plus#2(
x4,
x2))
fold#3(
Nil) →
0'fold#3(
Cons(
x4,
x2)) →
plus#2(
x4,
fold#3(
x2))
main(
x1) →
fold#3(
x1)
Types:
plus#2 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
fold#3 :: Nil:Cons → 0':S
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
gen_0':S3_0 :: Nat → 0':S
gen_Nil:Cons4_0 :: Nat → Nil:Cons
Generator Equations:
gen_0':S3_0(0) ⇔ 0'
gen_0':S3_0(+(x, 1)) ⇔ S(gen_0':S3_0(x))
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons4_0(x))
The following defined symbols remain to be analysed:
plus#2, fold#3
They will be analysed ascendingly in the following order:
plus#2 < fold#3
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus#2(
gen_0':S3_0(
n6_0),
gen_0':S3_0(
b)) →
gen_0':S3_0(
+(
n6_0,
b)), rt ∈ Ω(1 + n6
0)
Induction Base:
plus#2(gen_0':S3_0(0), gen_0':S3_0(b)) →RΩ(1)
gen_0':S3_0(b)
Induction Step:
plus#2(gen_0':S3_0(+(n6_0, 1)), gen_0':S3_0(b)) →RΩ(1)
S(plus#2(gen_0':S3_0(n6_0), gen_0':S3_0(b))) →IH
S(gen_0':S3_0(+(b, c7_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
plus#2(
0',
x12) →
x12plus#2(
S(
x4),
x2) →
S(
plus#2(
x4,
x2))
fold#3(
Nil) →
0'fold#3(
Cons(
x4,
x2)) →
plus#2(
x4,
fold#3(
x2))
main(
x1) →
fold#3(
x1)
Types:
plus#2 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
fold#3 :: Nil:Cons → 0':S
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
gen_0':S3_0 :: Nat → 0':S
gen_Nil:Cons4_0 :: Nat → Nil:Cons
Lemmas:
plus#2(gen_0':S3_0(n6_0), gen_0':S3_0(b)) → gen_0':S3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':S3_0(0) ⇔ 0'
gen_0':S3_0(+(x, 1)) ⇔ S(gen_0':S3_0(x))
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons4_0(x))
The following defined symbols remain to be analysed:
fold#3
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fold#3(
gen_Nil:Cons4_0(
n575_0)) →
gen_0':S3_0(
0), rt ∈ Ω(1 + n575
0)
Induction Base:
fold#3(gen_Nil:Cons4_0(0)) →RΩ(1)
0'
Induction Step:
fold#3(gen_Nil:Cons4_0(+(n575_0, 1))) →RΩ(1)
plus#2(0', fold#3(gen_Nil:Cons4_0(n575_0))) →IH
plus#2(0', gen_0':S3_0(0)) →LΩ(1)
gen_0':S3_0(+(0, 0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
Innermost TRS:
Rules:
plus#2(
0',
x12) →
x12plus#2(
S(
x4),
x2) →
S(
plus#2(
x4,
x2))
fold#3(
Nil) →
0'fold#3(
Cons(
x4,
x2)) →
plus#2(
x4,
fold#3(
x2))
main(
x1) →
fold#3(
x1)
Types:
plus#2 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
fold#3 :: Nil:Cons → 0':S
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
gen_0':S3_0 :: Nat → 0':S
gen_Nil:Cons4_0 :: Nat → Nil:Cons
Lemmas:
plus#2(gen_0':S3_0(n6_0), gen_0':S3_0(b)) → gen_0':S3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
fold#3(gen_Nil:Cons4_0(n575_0)) → gen_0':S3_0(0), rt ∈ Ω(1 + n5750)
Generator Equations:
gen_0':S3_0(0) ⇔ 0'
gen_0':S3_0(+(x, 1)) ⇔ S(gen_0':S3_0(x))
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons4_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus#2(gen_0':S3_0(n6_0), gen_0':S3_0(b)) → gen_0':S3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(14) BOUNDS(n^1, INF)
(15) Obligation:
Innermost TRS:
Rules:
plus#2(
0',
x12) →
x12plus#2(
S(
x4),
x2) →
S(
plus#2(
x4,
x2))
fold#3(
Nil) →
0'fold#3(
Cons(
x4,
x2)) →
plus#2(
x4,
fold#3(
x2))
main(
x1) →
fold#3(
x1)
Types:
plus#2 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
fold#3 :: Nil:Cons → 0':S
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
gen_0':S3_0 :: Nat → 0':S
gen_Nil:Cons4_0 :: Nat → Nil:Cons
Lemmas:
plus#2(gen_0':S3_0(n6_0), gen_0':S3_0(b)) → gen_0':S3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
fold#3(gen_Nil:Cons4_0(n575_0)) → gen_0':S3_0(0), rt ∈ Ω(1 + n5750)
Generator Equations:
gen_0':S3_0(0) ⇔ 0'
gen_0':S3_0(+(x, 1)) ⇔ S(gen_0':S3_0(x))
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons4_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus#2(gen_0':S3_0(n6_0), gen_0':S3_0(b)) → gen_0':S3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(17) BOUNDS(n^1, INF)
(18) Obligation:
Innermost TRS:
Rules:
plus#2(
0',
x12) →
x12plus#2(
S(
x4),
x2) →
S(
plus#2(
x4,
x2))
fold#3(
Nil) →
0'fold#3(
Cons(
x4,
x2)) →
plus#2(
x4,
fold#3(
x2))
main(
x1) →
fold#3(
x1)
Types:
plus#2 :: 0':S → 0':S → 0':S
0' :: 0':S
S :: 0':S → 0':S
fold#3 :: Nil:Cons → 0':S
Nil :: Nil:Cons
Cons :: 0':S → Nil:Cons → Nil:Cons
main :: Nil:Cons → 0':S
hole_0':S1_0 :: 0':S
hole_Nil:Cons2_0 :: Nil:Cons
gen_0':S3_0 :: Nat → 0':S
gen_Nil:Cons4_0 :: Nat → Nil:Cons
Lemmas:
plus#2(gen_0':S3_0(n6_0), gen_0':S3_0(b)) → gen_0':S3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':S3_0(0) ⇔ 0'
gen_0':S3_0(+(x, 1)) ⇔ S(gen_0':S3_0(x))
gen_Nil:Cons4_0(0) ⇔ Nil
gen_Nil:Cons4_0(+(x, 1)) ⇔ Cons(0', gen_Nil:Cons4_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus#2(gen_0':S3_0(n6_0), gen_0':S3_0(b)) → gen_0':S3_0(+(n6_0, b)), rt ∈ Ω(1 + n60)
(20) BOUNDS(n^1, INF)